martes, 24 de mayo de 2011

El Acero.

El Acero:
Se denomina Acero a aquellos productos ferrosos cuyo porcentaje de Carbono está comprendido entre 0,05 y 1,7 %.
El Acero es uno de los materiales de fabricación y construcción más versátil y adaptable. Ampliamente usado y a un precio relativamente bajo, el Acero combina la resistencia y la trabajabilidad, lo que se presta a fabricaciones diversas. Asimismo sus propiedades pueden ser manejadas de acuerdo a las necesidades especificas mediante tratamientos con calor, trabajo mecánico, o mediante Aleaciones.
El Acero funde entre 1400 y 1500ºC pudiéndose moldear más fácilmente que el Hierro.
Resulta más resistente que el Hierro pero es más propenso a la corrosión. Posee la cualidad de ser maleable, mientras que el hierro es rígido.
Tratamiento Térmico:
El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas para las cuales está creado. Este tipo de procesos consisten en el calentamiento y enfriamiento de un metal en su estado sólido para cambiar sus propiedades físicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano, incrementar la tenacidad o producir una superficie dura con un interior dúctil. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecidos.
Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el de hierro-carbono. En este tipo de diagramas se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos.
Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. Los principales tratamientos térmicos son:
  • Temple: Su finalidad es aumentar la dureza y la resistencia del acero. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 900-950 °C) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etcétera.
  • Revenido: Sólo se aplica a aceros previamente templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.
  • Recocido: Consiste básicamente en un calentamiento hasta temperatura de austenitización (800-925 °C) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.
  • Normalizado: Tiene por objeto dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido.

El acero se puede obtener a partir de dos materias primas fundamentales:


el arrabio, obtenido a partir de mineral en instalaciones dotadas de horno alto (proceso integral);
las chatarras férricas, que condicionan el proceso de fabricación. En líneas generales, para fabricar acero a partir de arrabio se utiliza el convertidor con oxígeno, mientras que partiendo de chatarra como única materia prima se utiliza exclusivamente el horno eléctrico (proceso electrosiderúrgico).




Principios básicos para la obtención del acero

La obtención del acero pasa por la eliminación de las impurezas que se encuentran en el arrabio o en las chatarras, y por el control, dentro de unos límites especificados según el tipo de acero, de los contenidos de los elementos que influyen en sus propiedades.

Las reacciones químicas que se producen durante el proceso de fabricación del acero requieren temperaturas superiores a los 1000 ºC para poder eliminar las sustancias perjudiciales, bien en forma gaseosa o bien trasladándolas del baño a la escoria.

Principales reacciones químicas en el afino
Elemento
Forma de eliminación
Reacción química
CarbonoAl combinarse con el oxígeno se quema dando lugar a  y gaseoso que se elimina a través de los humos.
ManganesoSe oxida y pasa a la escoria.
Combinado con sílice da lugar a silicatos.
SilicioSe oxida y pasa a la escoria.
Forma silicatos
FósforoEn una primera fase se oxida y pasa a la escoria.
En presencia de carbono y altas temperaturas puede revertir al baño.
Para fijarlo a la escoria se añade cal formándose fosfato de calcio.
AzufreSu eliminación debe realizarse mediante el aporte de cal, pasando a la escoria en forma de sulfuro de calcio. La presencia de manganeso favorece la desulfuración.
Proceso de fabricación del acero

El proceso de fabricación se divide básicamente en dos fases: la fase de fusión y la fase de afino.

Fase de fusión
Una vez introducida la chatarra en el horno y los agentes reactivos y escorificantes (principalmente cal) se desplaza la bóveda hasta cerrar el horno y se bajan los electrodos hasta la distancia apropiada, haciéndose saltar el arco hasta fundir completamente los materiales cargados. El proceso se repite hasta completar la capacidad del horno, constituyendo este acero una colada.

Fase de afino
El afino se lleva a cabo en dos etapas. La primera en el propio horno y la segunda en un horno cuchara.

En el primer afino se analiza la composición del baño fundido y se procede a la eliminación de impurezas y elementos indeseables (silicio, manganeso, fósforo, etc.) y realizar un primer ajuste de la composición química por medio de la adición de ferroaleaciones que contienen los elementos necesarios (cromo, niquel, molibdeno, vanadio, titanio, etc.).

El acero obtenido se vacía en una cuchara de colada, revestida de material refractario, que hace la función de cuba de un segundo horno de afino en el que termina de ajustarse la composición del acero y de dársele la temperatura adecuada para la siguiente fase en el proceso de fabricación.

El control del proceso
Para obtener un acero de calidad el proceso debe controlarse en todas sus fases empezando, como ya se ha comentado, por un estricto control de las materias primas cargadas en el horno.

Durante el proceso se toman varias muestras del baño y de las escorias para comprobar la marcha del afino y poder ir ajustando la composición del acero. Para ello se utilizan técnicas instrumentales de análisis (espectómetros) que permiten obtener resultados en un corto espacio de tiempo, haciendo posible un control a tiempo real y la adopción de las correcciones precisas de forma casi instantánea, lográndose así la composición química deseada.

Los dos elementos que más pueden influir en las características y propiedades del acero obtenido, el carbono y el azufre, se controlan de forma adicional mediante un aparato de combustión LECO. Pero además de la composición del baño y de la escoria, se controla de forma rigurosa la temperatura del baño, pues es la que determina las condiciones y la velocidad a la que se producen las distintas reacciones químicas durante el afino.



Según el porcentaje de carbono las aleaciones Hierro-Carbono puede clasificarse en:
Fundiciones %C≥1.76%
Aceros %C ≤1.76%.